markdowndocs

View project on GitHub

up

Data Science Languages Cheetsheet

This is a table comparing syntax in R, Python, and Matlab/Octave

Language Reference for R
Language Reference for Python
Language Reference for Matlab

Cheatsheet for R
Cheatsheet for Python 2.7
Cheatsheet for Python 3
Cheatsheet for Octave

Amost always imports

R Python Matlab/Octave
library(tidyverse) import numpy as np  
  import pandas as pd  

Basics

Construct R Python Matlab/Octave
help on “func” ?func help(func) doc func
comment # comment # comment % comment
import library import import
string “it’s” or ‘it”s’ “it’s” or ‘it”s’ “it’s” or ‘it”s’ (strings or chars)
int 1234L 1234 1234
longint none switches transparently
even to bigints
int64(1234)
type of x class(x) type(x) class(x)
Formatted print print(sprintf(“pi:%$.2f”,pi)) print(“pi:%.2f” % (numpy.pi)) fprintf(“pi:%.2f”,pi)

Control

Construct R Python Matlab/Octave
for loop for (j in 1:5){print(j)} for j in range(6)):
    print(j)
for j=1:5 disp(j) end
list comprehension   lst = [j for j in range(5)]  
while loop while(TRUE){
   print(j)
   break
   }
while True:
    print(j)
    break
while true
   j
   break;
   end
function f <- function(x,y){ x+y } def f(x,y)
     x+y
function val = f(x,y)
val = x + y;

Arrays and Matrices

Construct R Python Matlab/Octave
array a = 1:3 a = np.array([1,2,3]) a = [1,2,3]
matrix m = matrix(1:4,2,2) m = np.matrix(‘1 2; 3 4’) m = np.matrix(‘1 2; 3 4’)
number of elements length(m) np.size(m) numel(m)
dimensions dim(m) np.shape(m) size(m)
list l <- list(c(1,2,3)) lst = [1,2,3] not used much I think

Data Frames might be Tables in Matlab
Intro to pandas 10 minutes to pandas

Data Frames

Construct R Python Matlab/Octave
Simple Data Frame df <- data.frame(x=c(1,2,3),y=(4,5,6)) df = pd.DataFrame({ ‘x’ : [1,2,3],’y’:[4,5,6] }) ?
Read csv df <- read.csv(“mydata.csv”) df = pd.read_csv(‘foo.csv’) ?
Extract column x <- df$x x = df.x ?